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Abstract

In typical product development processes, like plastic injection mould design, design information flow is not well

supported by the current available IT systems. At different stages of a product life cycle, from documentation of requirement

specifications, to conceptual design, detailed structure design and production, engineering knowledge is striped off except the

bare minimum geometrical and control data, such as computer-aided design (CAD) solid models and cutting tool paths.

Associative relations among engineering features are normally ignored; hence data consistency and design changes are

difficult to be managed. In this paper, interfacing knowledge oriented tools and CAD application is identified as a technical

gap for intelligent product development, and the concept of associative feature is introduced. For high-level reasoning and the

execution of decisions, to define associative features in the form of self-contained and well-defined design objects is essential.

As a case study, cooling channels in the design of plastic injection moulds with a CAD tool are modeled as an illustrating

associative feature type. Potential integration among different applications based on such associative features is also

explored.
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1. Introduction

In concurrent engineering [1], all the engineering

processes are supposed to be supported with inte-

grated computer-aided tools, and based on a consis-

tent set of data with different application views. Such

applications include conceptual design, structural

design, detailed design, design analysis for certain

specific engineering aspects (DFX), computer-aided

process planning (CAPP), and computer-aided man-

ufacturing (CAM) tool path generation, etc. Unfortu-

nately, this proposed scenario has not been realized

due to the interoperability limitations of different

software packages. So far almost all the computer-

aided design (CAD) system vendors have only imple-

mented data exchange functions for un-parameterized

two-dimensional (2D) drawings or 3D solid models.

Such rigid geometry models are then used for other

applications. International effort has been made to

develop a standard, STEP, for engineering data repre-

sentation and communication [2,3]. Although, it has

contributed in a great way for product modeling,

however, implementing this standard in real applica-

tions still requires a lot of information modeling and
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development, especially for the interrelated objects

that reflects different perspectives and abstraction

levels within the design domain [4].

It has been acknowledged that in concurrent engi-

neering [5], interoperability should cover the relation-

ship between a knowledge-based engineering (KBE)

system and a CAD platform. However, to transfer

information from CAD to KBE systems is very diffi-

cult because KBE systems rely heavily on the design

intent to perform activities, such as cost estimation or

DFX analyses. The intelligence added to CAD geo-

metry is either stripped off by the translation software

or unrecognizable by KBE system. In addition, many

CAD systems are unable to completely and unam-

biguously capture design intent. On the other hand,

transfer KBE intelligence to CAD systems is equally

challenging because there is no mechanism to enable

such information flow.

It has been highlighted in concurrent engineering that

product and process models need to be addressed at

three different levels of representations, knowledge,

information, and data levels [1]. Geometrical entities

are complex in nature and are usually integrated with

KBE systems via another layer of object-oriented soft-

ware in order to achieve effective reasoning and execu-

tion [1,6–8]. This is due to the fact that most knowledge-

oriented systems use first-order logics as the foundation,

and each predicate has to be self-contained, and well

defined. The format of predicates with objects can be as:

Bigger-than (Object-A, Object-B); or

Bigger-than (x, bigger-of (Object-A, Object-B)).

One way to bridge these gaps is to build high-level

design expertise and rules in a knowledge-oriented

system [9,10] while low-level design intent into a

CAD system in the form of information-rich objects,

which can be referred to as features in general

although there have been many different definitions

in the past literature [11–14]. As shown above, with

certain naming conventions, such objects can then be

mapped as arguments of predicate calculus, and

manipulated with artificial intelligence (AI) lan-

guages, such as Prolog. Knowledge-driven queries

and operations on these objects become feasible. Once

a complete product model is fully defined with self-

contained objects, concurrent engineering throughout

the product life cycle can be supported via aspect

models and meta-models [7,12,15].

In this paper, interfacing knowledge-oriented tools

and CAD applications is identified as a technical gap

for intelligent product development, and a new con-

cept, named associative feature, is introduced. The

authors intend to expand the existing feature types to

include a flexible group that has imposed great diffi-

culties in traditional feature based design. For high-

level reasoning and the execution of decisions, to

define associative features in the form of self-con-

tained and well-defined design objects are essential.

As a case study, cooling channels in the design of

plastic injection moulds with a CAD tool are modeled

in the form of associative feature type. Potential

integration among different applications based on

such associative features is also explored.

This paper consists of seven sections including this

introduction. In Section 2, the feature technology is

briefly reviewed. Sections 3 gives a definition for the

new feature type, namely associative feature. Then in

Section 4, the design of cooling channel representa-

tion, after analyzing the detailed requirements, is

presented. Section 5, the proposed solution and func-

tionality are introduced. In Section 6, potential inte-

gration with other applications is discussed. Finally,

summary discussion and conclusions are given in

Section 7.

2. Feature technology review

There have been many kinds of definitions for

features used in CAD/CAM arena. They are initially

modeled based on machining features that can be used

to integrate CAPP and CAM packages [11]. After

many years of development on feature-based design or

manufacturing, most of the implemented features are

still CAD application oriented and related to machin-

ing processes (e.g. holes, slots, pockets, etc.) or design

geometry (e.g. drafting angle). Their definitions are

based on predefined parametric templates, which do

not have the flexibility to be extended or reconfigured

as required by some design processes, like mold-

cooling channel design. Otto [16] recognized three

groups of information consistency breakdowns to be

addressed by feature technology, static, dynamic and

hybrid breakdowns. Effort has been tried to overcome

these issues, such as CAD and CAE feature informa-

tion sharing [8]. For example, when plastic parts are to
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be analyzed with CAE applications, walls, ribs, mid-

dle planes are concerned; hence, they are defined as

features. More recently, feature concept has been very

much expanded to any meaningful grouping schema

related to geometrical entities. In fact, feature defini-

tion is very much dependent on the application pur-

poses. Otto [16] described the role of features is to

relate (product or part) geometry to an engineering

discipline in order to represent certain meaning. Fea-

ture modeling represents a special application of

information modeling. In this paper, the authors intend

to differentiate a new group of features that has not

been addressed in research papers.

3. The concept of associative features

Use mold design as an example. Certain geome-

trical entities are grouped with specific characteris-

tics. These entity groups can be identified as core and

cavity inserts [17], sub-inserts and electrode [18],

cooling channels [19,20], and machining set-ups

[21]. Let us analyze such geometrical entities briefly.

Core and cavity inserts enclose a cavity volume in a

plastic injection mold that forms the shape of a mold-

ing part. Usually, the molding part is designed first by

product designers. Core and cavity inserts shares

molding part surface geometry that is separated by

the parting line [22]. Hence, in order to support the

consistent design throughout the concurrent engineer-

ing life cycle, core/cavity surfaces should be asso-

ciated with the molding part surfaces, so that, if the

part geometry is modified at later stage, the mold

design can be updated accordingly, and changes can

be minimized. Sub-inserts are used when undercuts

exist on the molding part geometry and side-cores or

side-cavities have to be used. Again, a sub-insert’s

impression face is associated with the molding part

geometry. Such association has not been modeled

concisely as a feature or an object [18]. The similar

relations exist between a mold electrode’s geometry

and the molding part because it is just the inversed

definition to sub-inserts. Cooling channels are also

supposed to be inter-connected to form cooling cir-

cuits. When mold designer carries out conceptual

design, cooling circuits are considered. However,

when potential geometrical collision between cooling

channels and other features being checked, 3D cool-

ing channel geometry must be considered. For cooling

effect analysis, CAE tools also require cooling circuit

mesh representation [19]. This paper uses cooling

channels as the illustration case; its associative nature

will be introduced in detail in the following sections.

It can be observed that such design elements’

topological configurations cannot be predefined, and

yet very much commonality exists among different

instances. The intricacy of geometrical relations in the

term of mutual dependency is essential. They are

named as associative features.

Associative features are very difficult to be repre-

sented with the traditional feature concept because as

such they cannot be wrapped up as predefined two-

manifold entities [16]. Hence, whenever such features

are involved, there exist difficulties to fully integrate

product design models with high-level knowledge

representation models [12,21].

To represent associative features consistently,

object-oriented technology offers excellent solution.

In this work, a feature is defined as an object that

relates geometrical entities, and supports all applica-

tions within its scope of purpose. The previous section

has highlighted that features have to be flexible, self-

contained, and consistent to integrate different appli-

cations. Here, ‘‘flexible’’ means the capability of the

feature data structure that can be created, edited, and

deleted by the end user dynamically through certain

composing methods. The data structure should also

provide interfaces to support different applications.

‘‘Self-contained’’ means features can keep its valida-

tion and integrity before and after any interaction with

any integrated applications. In other words, if a feature

can be represented with a self-contained object, it is

believed to be well-defined [23]. It can be further

appreciated that with a well-defined object model,

features can be expressed as declarative knowledge

and hence enables higher level knowledge-oriented

processing [16].

To address the requirements for concurrent engi-

neering and product life cycle support, the proposed

model for associative features should have the follow-

ing key characteristics:

� Built-in associative links to its related geometric

entities.

� Self-validation for the consistency of its entities,

attributes, constraints, etc.
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� Methods available for constructing, storing, index-

ing, editing and destroying its instances.

� Methods that can be expanded to interface with

query and execution mechanisms for high-level

knowledge processes.

� Methods to interface with other engineering appli-

cation tools.

Based on the above concept, an associative tool for

cooling system design is developed as a module of

MoldWizardTM, which is a special process-based soft-

ware solution for plastic injection mold design.

4. Design of associative cooling channels

4.1. Current practice

Due to the short product development cycles, plastic

injection mold designers are required to compress

their design time and to accommodate more late

changes. The design of cooling system affects not

only the quality of mold assemblies but also the

efficiency in manufacturing. Many factors must be

considered in designing a cooling system, they include

molding part thickness, cooling channel number, loca-

tions and sizes. Li [24] proposed a design synthesis

algorithm by decomposing a complex molding part

shape into shape features and merging their individual

cooling channels into acceptable conceptual cooling

circuits. It has been indicated by Singh [25] that design

variables, such as locations, types of cooling channels

and 3D layout of circuits, are usually modified fre-

quently for addressing late part design changes as well

as mold design optimization. The modification pro-

cess is laborious and error-prone because designers

have to repetitively edit and update CAD models.

Computer-aided tools for injection molding has

emerged since early 1970s [6], most of which are

focused on optimization algorithms. This can be

shown in the works about flow computation and

analysis routines [26]. An expert system for designing

mold-cooling systems was introduced by Kwon and

Weeks [27]. The system consists of four modules, top-

level layout design, analysis, evaluation and decision-

making. A decision-making module through a design

cycle evaluates the redesign of cooling channels based

on the rules stored in a knowledge base. However, this

system was not integrated with a CAD system; initial

design parameters are input by the user via a command

line interface. Wang and his co-workers [19,28] had

developed a computer-aided mold design system.

They suggested a design strategy with three-stages,

initial design with one-dimensional (1D) approxima-

tion, two-dimensional design with optimization, and

three-dimensional design with cooling effect analysis.

They had developed Cornell Cooling System Design

Program (CCSDP), which uses 3D boundary element

method (BEM) to analyze 3D heat-transfer. In their

work, they recognized the fact that the parameters in

designing mold-cooling system are numerous. They

listed eight design modification options if the cooling

system is not satisfactory. They are all related to

cooling channels geometry changes. That is why

associative cooling design tools are urgently required.

They should be able to free mold designers from

tedious geometrical updating and to keep design

models consistent so that the total mold design cycle

time can be shortened.

Mok et al. [29] had considered cooling systems with

automated retrieval of certain circuit patterns, such as

straight or U types. Since they used fixed patterns, the

system does not provide the flexibility to compose

complex cooling circuits. More focused areas for the

creation of sub-systems, such as core/cavity parting

[17,30,31]; runners [32,33], gate locations [26] and

cooling systems [27] are also studied. However, the

association among geometrical entities is not discussed.

More recently, object-oriented (OO) software devel-

opment technology has been applied in the develop-

ment of mold design tools [6,34,35]. Object definitions

help in great deal to sort out complicated relationships

in mold design, especially among part-independent

parts and features. However, keeping the relationships

among geometrical entities and making them easily

customizable is still not a trivial task.

The creation of cooling-holes/channels entails sev-

eral time-consuming and manual tasks, such as creat-

ing holes, maintaining the connections among them to

form circuits. If these tasks can be partially automated,

the design time can be reduced considerably and hence

the productivity enhanced. In industry practice, it is

common to use at least four major cooling circuits in a

mold assembly. They are located on, namely, the

cavity insert, the core insert, and the A- and B-plates

[22]. In most of the CAD design tools, a drilling hole is
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modeled as a HOLE feature, which is a negative

cylindrical solid with/without a cone end. Other

extended features include counter-bored hole, thread

hole, etc.

However, because solid features are rigidly asso-

ciated with the housing solid, it was found from very

experienced mold designers that, solid cylinders

instead of features are commonly used to represent

cooling channels. In the case of blind channels, the

cylinders are chamfered at the blind end to make them

appear as drilled-blind holes. When the design is

finalized, all channels are united to form a cooling

circuit. These circuits are not converted into holes (or

cuts) until the design has been finalized and ready for

down stream tasks, such as thermal analysis or CAM

cutting tool path generation.

More detailed reasons for not using HOLE features

directly to represent cooling channels are in four folds:

� It is useful for visual inspection to plot a drawing,

which has highlighted cooling circuits (without

detailed features of the cavity and core blocks,

and mold plates). It is not possible to plot cooling

circuits only if they are made up of HOLE features

created on solids without showing the details of

these solids.

� Repositioning and modifying cylinders in a CAD

environment require much less steps than HOLE

features.

� When HOLE features is used, when plotting cooling

circuit drawings, they cannot be assigned with dif-

ferent colors from their belonged solids. This gives

difficulties in checking cooling circuits against other

components or features on a plotted drawing; even

through the drawing can be plotted in color.

� It is not easy if not impossible to automatically

check collisions with other mold components, e.g.

ejection pins and cooling channels, if they are

represented with HOLE features.

On the other hand, using native CAD modeling

functions to create cooling channels in the form of

solid cylinders has several shortcomings. Firstly, many

steps are required for a simple channel:

� Create a cylinder,

� chamfer the blind end if it represents a blind

channel,

� run through equal series of dialogue boxes to posi-

tion, copy and re-orient the cylinders, if needed.

Secondly, no intelligence is built-in in the cooling

channel representation. For example, it is good to have

basic reasoning capabilities like:

� Identifying cooling channel cylinders (not any

cylinder in the model). This is particularly impor-

tant when the cooling channel information is to be

used for heat-transfer analysis and collision check.

� Providing orientation information for plugs to be

inserted into cooling channels with user-friendly

drag and place manner.

Thirdly, all the geometrical elements created are

separated and individual without organization and

association. Therefore, if there is any change at the

late stage of design, a lot of modifications are required.

They are error prone. In most cases, late changes are

inevitable and frequent, such that the mold designer

would be frustrated with the tedious modifications and

corrections. Some errors can cause mold delay or poor

assembly quality.

4.2. Expectation for associative cooling channels

To overcome these shortcomings, there is a need to

have a special software tool for designing cooling

channels in a mold assembly. This work is targeted to

provide substantial automation for cooling circuit

generation. Besides, it needs to provide associative

links among cooling-holes and their relevant faces.

This is the most important objective of this work

except user-friendly process automation. It can be

comprehended that if all the cooling channels are

created in an associative approach, then declarative

terms in knowledge rules, such as distances from

cavity features, attached component orientations,

penetrating faces and drilling directions, and the con-

nectivity within a circuit can be embedded with the

CAD models. Hence, the information stored becomes

explicit and persistent. The cooling channels are to be

updated if penetrating faces or hole types need to be

modified at later design stage. Comparing to the

approaches in [27,29], this approach has a great

advantage that the mold designer can accommodate

modifications easily throughout the product life cycle.

It can also be said that, design rules stored in a separate

knowledge base, can be related to cooling feature

objects embedded associatively in the CAD geome-

trical database.
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4.3. Definitions for associative cooling channels

In this work, the cooling system of a mold consists

of several cooling circuits, and a cooling circuit

consists of a few cooling-holes. An example of cool-

ing circuit is shown in Fig. 1. A cooling circuit is

defined as a type of objects that represent all the inter-

connected cooling-holes (Hole 1 to Hole 5 in Fig. 1)

with different orientations between a cooling inlet and

its corresponding outlet. Fig. 2 shows the semantic

structure of cooling system objects. Here, ‘‘hole’’ is

used to describe the geometrical shape of a cooling

channel, however, its representation is not the tradi-

tional HOLE features. These holes are drilled from

faces of different mold plates or inserts. The face used

to drill a cooling-hole is named as penetrating face.

Naturally, a cooling-hole has one penetrating face and

hole-drilling direction is always leaving from the

penetrating face and pointing to the other end.

Usually, cooling-holes are perpendicular to the pene-

trating face.

To represent cooling-holes, cooling guiding lines

have to be introduced. Some terms used are shown in

Fig. 3. A cooling-hole has a guiding line, which is a

straight-line segment starting from a cooling-hole

penetrating center point to the other end center point.

In a design session with this cooling module, cooling-

holes are initially represented with their guiding lines

with attached attributes to specify the ‘‘hole’’ para-

meters. For example, in Fig. 1, AB is the cool guiding

line for Hole 1, and CD is for Hole 2. Note that

guiding lines also indicate hole-drilling directions. A

cooling guiding line can be used to store certain

attributes, such as the cooling-hole types, and dia-

meters.

These guiding lines are used to generate cooling-

holes; this point will be introduced in later sections.

The cooling guiding lines of all the holes within a

cooling circuit are grouped as a guiding path. For

example, given in Fig. 1, the only guiding path for the

circuit includes five guiding lines, i.e. AB, CD, EF,

GH, and IJ. In this work, a guiding path essentially

represents each cooling circuit (see Fig. 2). The

information stored in a cooling guiding path is com-

plete; cooling solids can be regenerated again and

again. For a circuit, the guiding path is used to keep the

Fig. 1. Example of a cooling circuit.
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connectivity among its guiding lines. To validate and

verify this condition, a ‘‘validator’’ method is defined

in the guiding path object.

To illustrate the volume in the design space, or to

check physical collision among mold assembly ele-

ments, cylindrical solids (with cone ends in cases of

blind holes) are generated automatically by a method

based on individual guiding lines at any time when

required. They are referred to as cooling solids in the

following sections. These cooling solids can also be

deleted to simplify the display. If, after confirming the

cooling system design, geometrical HOLES are still

needed for CAM application and component structure

detailing, they can be achieved by subtracting cooling

solids from their corresponding plate/insert bodies.

At the both ends of each cooling solid, there can be

four types of configurations to be selected (see Fig. 4):

(1) drill-through; (2) counter-bored; (3) blind without

Fig. 2. Semantic structure of the cooling channel components.
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extension and (4) blind with extension. These geome-

trical features can be represented with attributes

attached to guiding lines. Such related attributes

include types of the end, cooling-hole diameter, the

depth and the diameter of the counter-bored hole if

applicable. They are used for cooling-hole modifica-

tion and cooling solid re-creation. In fact, a cooling

guiding line contains all the information about each

individual cooling-hole with attributes.

From Fig. 2, it can be seen that a cooling system

contains all the geometrical and non-geometrical

information and has much richer attributes than a

group of holes or negative volume cylinders. In fact,

it can be viewed as a package of knowledge combina-

tion in application domain. The contents and repre-

sentation of a circuit object change according to the

context and user’s choices while only the essential

persistent information is kept into the CAD database.

For example, a circuit can be represented graphically

as a set of inter-connected guiding lines, or just a set of

cylindrical solids. Further elaboration can be seen in

the functionality section.

In practice, very often, there are some cooling

channels across multiple blocks (see Fig. 5). It means

a cooling channel consists of several connected

collinear cooling-holes (Hole 1, Hole 2 and Hole

3). To simplify the design, a special object type is

created for this type of channels, named as ‘‘Collinear

channel’’. From Fig. 2, it can be seen that a cooling

circuit may contain several such collinear cooling

channels other than simple cooling-holes. Each colli-

near channel is represented by a collinear path, which

groups the entire collinear channel guiding lines. Each

of its guiding lines still represents a cooling-hole in

turn. In the case shown in Fig. 5, AB, CD and EF form

a collinear path. Here, AB represents through Hole 1

with both counter-bored ends, CD represents through

Hole 2, and EF represents the blind Hole 3. As

discussed earlier, since, a cooling path can represent

a cooling circuit, therefore, it can contain several

collinear path other than simple cooling lines.

Obviously, for collinear channel lines, their element

guiding lines must be connected head to tail continu-

ously.

For explaining how the cooling channels are linked

to their corresponding penetrating faces, and then in

turn, to the mold plates or inserts, the detailed internal

data structure and relationships used in this work is

given later.

5. Solution and functionality

5.1. Embedded links and parameters

In the implementation, the start and end points of a

guiding line are made associated with the penetrating

and exiting faces except the end point for a blind hole.

To achieve this, ‘‘smart points’’ defined in Unigra-

phicsTM (UG) are used [36]. A ‘‘smart point’’ is ‘‘a

point on surface’’ associated with the face at the kernel

database level. It keeps the persistent link. If the face

Fig. 3. Terms used for a cooling-hole.

Fig. 4. Types of cooling cylinder ends.

Fig. 5. A typical collinear cooling channel.
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changes its position, the point will be derived dyna-

mically and updated accordingly. In other words, the

point follows the face changes. Hence, ‘‘smart’’ is

referred to describe the associative nature of an entity.

Since guiding lines are created based on such smart

end points, then the corresponding guiding lines are

also called as smart lines. For each of them, it is

connected to one (in the cases of blind holes) or two

smart points.

A cooling solid are generated along its smart guid-

ing line with CAD application programming interface

(API) functions. Initially, a cylindrical TUBE is gen-

erated by sweeping a circular section profile along a

guiding line [36]; then end features are added. For

example, to represent a blind hole, a cone end is added.

These cylindrical solids are then united as the repre-

sentation of cooling circuits.

5.2. Functional design and algorithms

In order to serve the design requirements, this

cooling channel module provides the following func-

tions:

� Creation of a cooling circuit with a smart guiding

path.

� Adding/Removing guiding lines to/from a guiding

path.

� Modification/Reposition (RPO) of a guide path.

� Deleting of a cooling circuit and its guide path.

� Creation of cooling solids.

� Modification of the cooling solids.

� Deleting of a cooling solid.

� Create a reference set to which cooling-hole fea-

tures on plate/insert are assigned.

� Deal with balanced and unbalanced designs for

multi-impression mold.

� Some important functions of these are briefly

described individually below.

5.2.1. Creation of a cooling circuit with a

smart guide path

To create the first guiding line of a guide path, the

cooling channel module is initiated first and the main

UI is displayed (see Fig. 6). The user needs to select a

face on an intended solid as the inlet penetrating

(planar) face of the circuit (Fig. 7). A plane equation

can be extracted from the selected planar face. Using

the user’s selection point returned, and the planar face

normal vector, a drilling axis (a point and a vector) is

formed. The drilling point becomes the initial start

point for the guiding path. A smart point is created on

the face. The default drilling direction (the direction to

generate the first cooling guiding line) is set to the

reverse direction of the face normal. An indicating

arrow is displayed on the graphic window. The user

can modify the direction, if he wants, with ‘‘Changing

Direction’’ option from the UI (Fig. 6). Then, the user

can dynamically drag a cooling line or input a value of

Fig. 6. The UI for creating guiding lines.
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the length for the cooling guiding line. The user can

also choose another face to indicate the ending face of

a through ‘‘hole’’. In the latter case, another smart

point is created at the end point of the guiding line.

After creating the first guiding line, a sequence num-

ber ‘‘1’’ is displayed near it (Fig. 7). Note that the

guiding line is a smart line.

To create the next guiding line (see Fig. 8), a drilling

vector is still required. The user can indicate it by

selecting a penetrating face at point F. Then, the next

guiding line direction is set to be in the reverse normal

direction of the selected face. The vector’s start point

C is found on the previous guiding line AB and is the

nearest point to the user’s indicated point F. This is an

embedded rule implemented in this work. By default,

to make the vector-definition user-friendly, many pre-

defined ‘‘rules’’ are applied to assist guiding line

creation. In the same example, when defining the next

guiding line CD from the previous one AB, since there

is no intersection between the new guiding line CD

and the penetrating face, the guiding line is then

extended automatically along the reverse direction,

and made to start from the drilling point E on the

penetrating face (Fig. 8). A smart point is created at E

on this face to make the guiding line associated with

the face. Similarly, another smart point D is created at

the end point of the guiding line if it ends at a face

(through hole only). Again, a sequence number is then

displayed near the guiding line. In the similar manner,

other guiding lines can be defined. Upon confirming

all the guiding lines of the intended guiding path, the

continuity within the path is checked by a method

named as ‘‘validator’’ (see Fig. 2).

5.2.2. Modifying and repositioning

After a cooling guiding line is selected, its proper-

ties, including its length, can be edited with the UI as

shown in Fig. 6. They can be changed and updated. In

fact, when a guiding line is selected, its guiding path is

also identified because all the guiding lines in a

guiding path are associated with continuity con-

straints. If the inlet point position of the guide path

is moved, the whole path follows accordingly. Surely

the user can delete a guide path by selecting the

Fig. 7. Creation of the first cooling guiding line.
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relevant option from the editing UI. Fig. 9 shows more

editing options under Reposition (RPO) sub-menu.

Fig. 10 is a screen snap.

5.2.3. Creating cooling solids

As described in the Section 4.2, cooling solids are

created only when the user needs them. After a guide

path is selected, the cooling solids can be created based

on the attributes of its individual guiding lines. Cooling

solid variations are defined as the start and the end

features of their associated base solids. The UI for this

purpose is shown in Fig. 11. Initially, the UI settings,

such as start type, end type, hole diameter, are assigned

with the default types and diameters preset in the UI

configuration file. They are then updated based on the

user’s input, i.e. types and parameters (attributes) of

the selected cooling guiding lines.

The configuration file also contains other initial

values of the default ‘‘hole’’ types, such as counter-

bore dimensions. Based on these default values, the

corresponding UI text boxes can be initially set. The

values in this configuration file are always overwritten

with the user’s choices of preferred values when he

accepts the cooling solid creation UI dialog box. In

this way, the UI settings become very user friendly

with some ‘‘learning’’ capability. On the other hand,

the entries to different fields of the dialog box are also

verified against preset conditions.

Once these attributes are confirmed, cooling solids

can be generated automatically by clicking ‘‘Show

Cooling Channel Relationship’’ button on the UI

(Fig. 11). They are created by using guiding lines

to sweep TUBEs (one of UG primitives) with an API

function. To represent a blind ‘‘hole’’, chamfer func-

tion is then called to add chamfer at the appropriate

end. Cooling solids can be deleted by clicking ‘‘Delete

Cooling Channel’’ button, but the types and para-

meters are still attached with the individual guiding

lines. These attributes can further be displayed and

edited with the same UI as shown in Fig. 11. Cooling

solids can be regenerated anytime when the user

wants.

Fig. 8. Creating another guiding line following a previous one.

Y.-S. Ma, T. Tong / Computers in Industry 51 (2003) 51–71 61



In more details, solid generation algorithms can be

grouped into the following six functions, i.e. the crea-

tion of the following types of channels: simple blind,

simple through, counter-bored blind, counter-bored at

one end and through, counter-bored at the both ends and

through, and finally, collinear cooling channels across

multiple solids. The details of algorithms, including

editing and deleting cooling channels, are not explained

in this paper due to the space limit.

For each of the above functions, the user’s input

parameters and sequences are differentiated with the

corresponding algorithm branches. A friendly UI is

designed for each case. A few simple cases are

explained in the following sections.

5.2.3.1. Creating simple blind ‘‘hole’’ solids. The

simplest case is to create a simple blind hole based

on the user-selected penetrating face. Based on the

guiding line started from the penetration point, and the

reverse normal vector of the penetrating face, a

dynamically dragging guiding line is created. The

end point of the guiding line is then a function of

the penetration point, the drilling vector and the depth

of the hole. Then the solid is generated with TUBE

function and the end of the hole is chamfered

according to the default angles and distances. The

solid is associated to the penetration face as well

because the guiding line is ‘‘tied’’ to it.

The second case in this algorithm is to create a blind

‘‘hole’’ solid based on a selected penetrating face and a

perpendicular reference ‘‘hole’’. Fig. 12 shows the

scenario. The moment a planar face is selected, the

drilling vector is determined. The additional selection

of another reference cooling solid serves to adjust the

start point in Y-direction, so that, the new cooling-hole

can intersect with the reference one. Note that in

Fig. 12, if the user indicates point P initially, the

system automatically set the start point to Q because

the reference cooling solid.

In certain cases, although the drilling vector is

determined when the user first selects the penetrating

face, if the user selects another reference cooling

solids, the drilling vector will be adjusted. In

Fig. 13, it can be seen that if the user select cooling

solid 1 as an addition reference after selecting the

penetrating face, the drilling vector will be flipped

from the initial direction to the opposite. Note that the

user can always reverse the drilling vector through an

UI button. Besides, in this case, when updating the

drilling vector, the associated face needs to be changed

too.

5.2.3.2. Creating simple through ‘‘hole’’ solids. This

algorithm uses similar functions as creating simple

blind hole, such as getting the start point and drilling

vector, UI data retrieval, and data verification. Some

minor modifications come from the reasoning for the

through end of the ‘‘hole’’. When the exiting face is

selected, based on the start point and the drilling

vector, an infinite line is created. The intersection

point of this line and the exiting face is made a

smart end point.

5.2.3.3. Creating counter-bored blind or through

‘‘hole’’ solids. This algorithm makes use the same

methods as the previous two cases except the creation

of the counter-bore portion. It is generated as a TUBE

again on top of the base cylinder with counter-bored

outer circle profile for a given depth of it. This method

is a function of the penetrating point, the drilling

vector and the depth of the counter-bore. The

Fig. 9. Repositioning sub-menu.
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counter-bore portion is united with the base cylinder

immediately to form the cooling solid.

5.2.3.4. Creating collinear cooling channel. The

objective to provide a method for the creation of a

collinear cooling channel is to achieve the association

among collinear individual holes. The key is that the

start and end points of each hole are ‘‘tied’’ to an

appropriate parent, such that when the parent is being

modified, the child will be notified of the

modification, and updated. Refer to Fig. 5 again for

the illustration.

Assuming the first cooling-hole (Hole 1; from left

to right) is created via ‘‘Create a counter-bored

through hole by selecting two planar faces’’. There-

fore, the start point of the hole A is ‘‘tied’’ to Face 1

and the end point B is ‘‘tied’’ to Face 2. Note Face 1

and Face 2 are part of Solid 1. Any modification to

these faces, such as offsetting them, will affect the

depth of the hole.

The creation of the middle hole has more flexibility.

The user can create it with either the methods of

‘‘Create a counter-bored through hole by selecting

two planar faces’’ or ‘‘Create a counter-bored through

hole by selecting a cooling ‘hole’ and a planar face’’.

For the first case, Face 3 and Face 4 (belonging to

solid 2) can be selected as the references for creating

Hole 2. Hence, start point C and end point D are

children of Face 3 and Face 4, respectively. Because

this hole is supposed to be a part of the collinear

channel, Face 2, which is associated with the end point

(B) of Hole 1, is also made linked to Face 3. Because

Face 3 is linked to the start point (C) of Hole 2, then it

is associated to B in turn (see also Fig. 14a). This is

assured by the ‘‘validator’’ of the collinear channel.

Hence, the first ‘‘hole’’ can slide along Face 2 without

upsetting the middle hole by thus creating two mis-

align holes.

In the second case, the parent of start point C is the

end point of the first ‘‘hole’’, i.e. point B. If the first

Fig. 10. Screen snap for editing guiding line position.
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‘‘hole’’ is modified by sliding Face 2, the middle

‘‘hole’’ will follow suit too. Due to the link between

start point C of Hole 2 and Hole 1’s end point B, once

point C is moved, Face 3 will be updated too (see also

Fig. 14b). This smart association between the two

holes creates embedded relations among multiple

solids with a collinear channel.

Similarly, the third blind hole from left to right in

Fig. 5 can be created with these two options: (1) ‘‘create

a counter-bored blind hole (one end) by selecting a

cooling-hole’’ or, (2) ‘‘create a counter-bored blind hole

(one end) by selecting a planar face’’. Hence, the end

result is the collinear cooling channel consisting of

three associated cooling-holes.

So far, we have discussed about creating a collinear

channel from scratch. Sometimes, the user needs to

create a collinear channel based on an existing refer-

ence cooling-hole (see Fig. 15). Such case is also

supported. To calculate the start point of the next

‘‘hole’’, in this case, the type of the selected existing

hole is important. In Fig. 15, as shown, the selected

hole is a blind one, then the next ‘‘hole’’ start point can

only exist at the point A instead of B, because the hole

has a blind end at B. There is no logical collinear

connection can be made at point B.

If the reference hole is a through one, then logically

the intended hole can be started at either end of the

selected hole. In Fig. 5, assuming Hole 2 is the existing

reference, the user can create either Hole 1 from point

C or Hole 3 from point D. To determine which one is

the next, the closer end to the user’s selecting point is

used to create the next collinear hole.

5.2.4. Modifying cooling solids

Cooling solids can be modified anytime within the

cooling channel module. When a cooling solid is

selected for editing, the parameters and end types

of the solid are displayed in an UI (shown in

Fig. 11). These parameters and end feature types

can be changed and updated. At the same time, the

attributes of their corresponding guiding lines are

updated.

5.2.5. Deleting cooling solids

Since cooling solids can be regenerated anytime

with the guiding lines, therefore, for display purpose,

the selected cooling solids can be deleted and regen-

erated with the guiding paths. However, if the user

deletes the guiding path together, then the deleted

cooling solids can no longer be regenerated.

5.3. Dealing with balanced and unbalanced

cooling circuits

In a mold set, it can be designed to produce several

moldings in a shot. Each molding cavity is called an

impression. When producing a family of moldings,

such as a toy set, the mold impressions are quite

different. Therefore, the thermal distribution has to

Fig. 11. The UI for cooling-hole end attributes input.
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be considered from overall layout instead of individual

impressions; in this case, the mold impressions are

unbalanced. When producing identical moldings with

several impressions, the thermal distribution problem

can be simplified by considering a single impression

only by assuming all other impressions have the same

thermal pattern. Then, the mold can be designed with a

symmetrical layout; in this case, the mold impressions

are balanced.

Similarly, there are two methods to create cooling

circuits: balanced and unbalanced. If the mold is

designed with a balanced multi-impression pattern,

and the designer wishes to have an identical cooling

circuit for each impression, then the balanced method

should be used. In this case, because each circuit is

designed mainly to cover one impression, therefore

the cooling effect can be better controlled to satisfy

heat-transfer requirements. This is especially recom-

mended for complex moldings where the cooling

effect analysis has been carried out with some simula-

tion packages [19,28].

In this work, all the mold assembly components are

organized with a tree structure. This tree is automa-

tically created when the user initializes a new mold

design project. The original plastic part is assigned

under the top-assembly part and is referred to as the

Product Part (Prod-part) (refer to Fig. 16). Another

part specially designated for cooling solids is created

under the top-assembly as well; it is named as the

Cooling Line part. This part is automatically created in

the predefined-assembly structure when the cooling

channel module is activated for the first time.

In order to address this balanced and unbalanced

cooling circuit design issue, two UG concepts, waved

entity and work part, have to be introduced first. UG

has a special technology, WAVE, that enables certain

geometrical entities to be referred to associatively

with certain functions, such as COPY and TRIM,

Fig. 12. Define a cooling solid with the reference of an existing perpendicular cooling solid.
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among different parts in an assembly. This is achieved

by copying the entities from one part to another with

persistent association. Those entities that are instan-

tiated in the destination part by copying from the

original entities are referred to as waved entities. They

share all the properties of, and are persistently asso-

ciated to, the source entities. It means when a source

entity is modified, its corresponding waved entity gets

updated automatically as well. Two examples of pos-

sible waved faces in an assembly are shown in Fig. 17.

Assume a source face is in component part 1, it can be

waved to create an associative copy, Face 1 in its

parent part (child-to-parent); or Face 2 in component

part 2 (child-to-child). For the second concept, in UG

assembly modeling environment, the work part is the

part where new entities are created.

Fig. 13. Alternation of the drilling vector when selecting a penetration face with two different reference cooling solids.

Fig. 14. Two cases to interface two cooling-holes in a collinear

channel. Fig. 15. Creating a collinear channel with an existing blind hole.
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Balanced impression design is achieved by applying

a component pattern on Prod-part together with the

core/cavity inserts within UG top-assembly structure.

In UG, component pattern function can only be applied

to an immediate child (or sub-assembly) of an assembly.

The idea of this work is, when creating balanced cooling

circuits, to create cooling entities in the prototype Prod-

part, so that they can be instantiated together with the

core/cavity inserts in the same pattern. Therefore, the

work part is set to Prod-part (see Fig. 16). When the user

selects a face in core/cavity, a waved face is created in

Prod-part (child-to-parent). Then, the master cooling

elements, including smart points, guide paths and cool-

ing solids, are created in Prod-part. Hence, when apply-

ing the component pattern for different impressions, all

instances are updated with the same cooling circuit. At

the same time, waved guide paths and solids are created

in the CL part (child-to-child); hence, with this part,

cooling entities can be easily managed and manipulated

transparently. In Fig. 18, some balanced cooling circuits

are illustrated.

When creating unbalanced cooling channels, the

work part is set to the CL part. When user selects a

face in core/cavity inserts, a waved face will be created

in Prod-part (child-to-parent) and then in the CL part

(child-to-child). However all related cooling entities,

such as smart points, guide paths and cooling solids,

are created in the CL part only. Prod-part and CL part

are then associated such that the cooling entities in the

CL part will be updated automatically if their linked

entities in Prod-part are changed. In other words, when

modifications occur in mold insert parts, the cooling

line part will also be refreshed automatically.

It can be appreciated that for the both cases, the

assembly tree structure enables the effort for design

rework, due to late product changes, largely reduced

and hence the efficiency enhanced.

5.4. Logical methods—‘‘creators’’ and

‘‘validators’’

In this cooling design module, there are two types of

logical methods of importance, ‘‘creators’’ and ‘‘vali-

dators’’ (see Fig. 2). They can be viewed as logical

methods because they keep an object to be self-con-

tained and well-defined. ‘‘Creators’’ are the methods

to construct the corresponding object contents. For

example, the ‘‘creator’’ of cooling guiding line is to

create an instance object with different input combi-

nations and to validate whether a selected face can be

the penetrating face for a hole. The role of cooling-

hole ‘‘creator’’ is to subtract cooling solid from their

corresponding plates or inserts and hence to create

cooling-holes. This type of methods decides if rela-

tions between objects can and should be maintained

Fig. 16. Cooling line part in the mold assembly tree.

Fig. 17. Two examples of possible waved faces in an assembly.
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and builds links across all associated cooling ele-

ments. ‘‘Validators’’ are designed to verify the inte-

grity and validity of objects. Three different ‘‘valida-

tors’’ are embedded in guiding path, cooling solid and

collinear channel objects, respectively. ‘‘Validators’’

verify the inputs of users, and invoke the next process

if the inputs are acceptable, or provide feedback to the

user if necessary. They ensure guiding lines/path

connectivity as well as legal user inputs. Clearly,

the functionality of these logical methods can be

further expanded. Many more logical rules can be

implemented.

5.5. Interactions

In order to avoid over complex display for mold

designers, cooling smart points, guide paths, and

solids in the Prod-part are put into some specific

layer and set to specific colors. This layer is set to be

visible when initializing Cooling Channel mod-

ule and invisible when quitting Cooling Channel

module. Clearly, in the cooling channel module,

many user interaction scenarios are involved. They

cannot be extensively described due to the space

limitation.

Fig. 18. An example of balanced cooling circuits.
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6. Potential integration with other applications

With the object definition of a cooling system,

conceptual cooling design can be simplified with

the help of cooling guiding line creation methods.

Detailed parameters and solid representation can be

left undefined until the design is ready for further

steps. Cooling circuit patterns can also be incorporated

easily with step-by-step enrichment of attributes and

the selection of associated faces.

Technically, if the cooling channels are modeled in

this associative feature form, CAE analysis for cool-

ing effect evaluation can be easily integrated because

the cooling guiding path can be used as the circuit

mesh [19]. For example, those logical rules that are

connected with mold design CAE analysis in

[25,27,28] can be implemented with certain query

and execution methods. The authors believe that this

should be the coming research direction, and it can

be categorized under a topic, i.e. knowledge driven

automation (KDA). The cooling effect can be further

measured in the form of another object. It can be

updated every time after the change of the cooling

system by running the analysis methods again and

again.

Similarly, collision check can be carried out auto-

matically by generating the cooling solids, and check-

ing them against other features or components with a

cycling algorithm. Most importantly, such integrated

applications can be achieved by making use the meth-

ods defined with the object of the associative cooling

system. Those ‘‘validators’’ introduced above assure

the consistency of the cooling system.

On the other hand, if the designer makes any

changes over the cooling system, it can send notifica-

tions to other related applications, or even trigger the

analysis functions automatically. It is also obvious that

when mold plates and inserts are modified, cooling

channels will be updated automatically. This function

provides timely feedback to check if any constraint is

violated. The output solid after Boolean operations

between the housing blocks and the cooling channel

solids can be directly used for CAM processing.

With the information of hole-positions, drilling

direction and the penetrating and exiting faces,

CAM machining cycles can be called for CNC codes

generation. In assembly modeling, associated compo-

nents like hose nipples and plugs, can be added with

‘‘drag-and-drop’’ manner. They can also be updated

when cooling channel positions or orientations are

changed.

7. Conclusion

This paper has described an object-oriented asso-

ciative design approach and proposed a new feature

type, namely, associative features. Associative cooling

channels in injection molds have been implemented

and used to illustrate the concept, methods and the

run-time behavior. It gives a comprehensive object

definition of cooling circuits. With this new approach,

mold designers can easily propagate changes from

mold plates or inserts to the cooling system without

tedious rework. It also supports integration with other

engineering applications, such as conceptual design

and CAE analysis. Therefore, it enables design-ana-

lysis-redesign cycles with a consistent data structure.

The emphasis is put on the built-in geometrical asso-

ciations among cooling channels and mold plates or

inserts for feature integrity.
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